
 1

Pirate Game

Annotation
Tua is able to use algorithmic thinking to develop two different algorithms to solve a
specific problem. He uses logical reasoning to evaluate the relative efficiencies of the
algorithms for program performance.

He demonstrates that he can operate within a text-based programming environment to
create a program to implement an algorithm. His program reveals an understanding of:

•	 iteration (the step event repeats constantly)

•	 selection through conditional logic (if player_coins <=0)

•	 global variables (player_coins)

•	 derived values (room_height and room_width)

•	 random numbers

•	 functions and parameters (instance_create).

Tua provides documentation for the program through the use of comments. He also
demonstrates that he can apply iterative development and testing to identify a missing
step in a program before moving on to the next part of the program.

Background
The students in Tua’s class are learning to program in a text-based programming environment.
They have developed and tested several programs that use variables, functions, random
numbers, and derived values. They have practised the decomposition strategy of breaking
down a program into functional requirements, breaking each requirement down further into an
algorithm, and then translating this into programming code. They have also explored iterative
development by testing each part of their program before moving on to the next requirement.

Task
The students are given a game called The Pirate Game in a text-based programming
environment (GameMaker: Studio). The game has been deliberately “broken” by their teacher,
Mr Walker – code is missing that is necessary for the game to run. The students play the game
to determine its rules and what has been broken.

The students are asked to develop a set of functional requirements for the game that cover its
objectives and how a player would interact with the game.

Next, they are asked to develop two algorithms for the missing code and to evaluate them
in terms of their effect on the program’s performance. They are required to program, test,
and debug the algorithm that they decide is the most efficient in order to ensure the game
functions as intended.

Computational thinking for digital technologies: Exemplar 16

PROGRESS OUTCOME 5

Exemplar 16: Pirate Game 2Computational thinking for digital technologies

Student response
After playing The Pirate Game, Tua develops the following set of functional requirements.

He realises that the bug in the game is that the game never ends. This is because there is no
program code to determine whether all the coins are lost and what should happen when they
are. He develops two algorithms to fix the bug in the program.

Mr Walker:	 Which algorithm would be better in terms of the use of computing
resources and game play?

Tua:	 The first algorithm would make the game laggy because it is constantly
testing the coins and collisions on every pirate object. The pirates respawn,
so that would mean even more checking. I think my second algorithm is
better because it focuses on the player collision event and there is only
one player object. And it only checks the number of coins when the player
collides with a pirate. This is better because the calculations and decisions
happen only when they need to, not all the time.

Mr Walker and Tua discuss the relative efficiencies of Tua’s algorithms.

Exemplar 16: Pirate Game 3Computational thinking for digital technologies

Downloaded from http://technology.tki.org.nz
Copyright © Ministry of Education 2017, except for Game Maker images
The program used in this exemplar is not officially endorsed by the Ministry of Education.
ISBN: 978-1-77669-210-1

Tua:	 The game stops after one collision with a pirate. The pirate doesn’t respawn.

Mr Walker: 	 What should happen next to continue game play?

Tua:	 I need to make a pirate respawn in the room at a random location.

Tua implements his second algorithm by writing code in GML. When testing his code, he finds
there is still a problem – pirates are not respawning in the game, so the game play cannot
continue after a pirate collides with the player.

Mr Walker and Tua discuss the bug in his program.

Tua adds the function to create another pirate at a random location within the game screen.
He then tests his final version to ensure that it allows the game play to continue.

